

GEO-ENGINEERING EXTREME EVENTS RECONNAISSANCE

Turning Disaster into Knowledge

Opportunities and Challenges

Breakout Session B: Lessons learned from Post-Earthquake Reconnaissance

(Ross B., Les Y., Keith K., Brady C., Barbara L., Ben M., Rob K.-Reporter)

Reconnaissance Team Selection

- By way of SC/AP input, team leader should understand and convey to recon team important data gaps that should be targeted by the recon team.
- Team Members balance should mix expert capabilities that address research targets, with new faculty & grad students that address the educational component.

Reconnaissance Assessment

- Assess effectiveness of each reconnaissance effort to identify areas of needed improvement.
- How can we do a better job?

Reconnaissance

- PRE-RECON: [1] Mine the real-time data stream generated from on-the-scene experts, USGS, EERI, etc. Primarily experts, with student assistance.
- RECON Phase 1 Overview to identifying areas of significance and defining major issues. Primarily experts, in the field.
- RECON Phase 2 with goal of collecting critical transient data. Experts and students.
- Develop deliverable product consistency (Web report structure, PDF, Google Earth Map)
- In an Executive Summary, identify the most significant case histories documented worthy of follow-on GEER effort.

Improve Education Emphasis

- More student involvement at the site and at the home campus.
- Develop and disseminate teaching module products from events (PPT, GE fly-though, YouTube videos). New page on GEER web site & USUCGER.
- New funding mechanisms for sending students that does not burden GEER [PEER, Private Sector scholarship, ASCE Student Chapters, ASCE, NSF Int'l Programs, University Alumni Donations, etc.]
- GEER Student Fellowship-fund recon travel or GEER training day

Training

- GEER should promote field work preparedness training as a workshop-course at national meetings (AGU, ASCE G-I annual convention).
- Practitioners get PDHs, CEUs.
- Motivation is to develop 'career skill' capabilities in field methods, promote safety. Could be prerequisite for students on field reconnaissance.
- Develop and disseminate training modules on GEER web site.

Safety

- Some EQ localities are generally safe for foreigners, some are not. Events may pose large safe ty risks, given inherent chaos following catastrophic disaster.
- First Responder training required.
- Because high-tech equipment may make reconmore susceptible to some risk factors, large groups may provide an added level of safety.
- Safety guidance needed for variety of risks, natural and man-made.

Communication

- Nightly clearinghouse meetings are critical for efforts of all sizes.
- FTP exchange critical for data transfer & updates.
- Smart phones or locally based cell phones preferred with SMS texting.
- Satellite phones needed in very remote locales.
- Cell phone GPS tracking [Google Maps "Latitude" or iPhone 'Loopt'] should work well for real-time tracking of team members.

Data Gap Targets

pdate and restructure EERI LFE sections.

Geologic geologic deposits e patterns of ground amplification?	Seismologic Did rupture directivity produce difference in damage pattern or distribution?	Geotechnical	Engineering
e patterns of ground amplification?	produce difference in damage pattern or		
distribution of			1
ation across fault What is pattern of ary deformation and es this compare with s examples?	Did energy pulses produce difference in the fault rupture pattern or distribution?	How did geotechnical characteristics influence the pattern of primary and/or secondary surface deformation?	How were structures affected by surface rupture or secondary deformation? What is the threshold displacement or tilting for significant damage? How does the pattern of PGD affect setback zonation policies?
eologic conditions led landslide tion and severity?	Are landslide patterns related to rupture directivity or epicentral location?	How does soil texture influence liquefaction patterns?	
historical igenic deposits e with possible paleo- i deposits?			How did the pattern of runup affect engineered structures? Is there informatioin on flow patterns or hydraulic controls that would help mitigation design?
re the geologic s on seiche-induced ing and/erosion?			
֡	i deposits? re the geologic s on seiche-induced	re the geologic s on seiche-induced	re the geologic s on seiche-induced